[IEEE TMM 2023] A Motion Distillation Framework for Video Frame Interpolation

发布者:颜波发布时间:2023-12-26浏览次数:11

Authors:

Shili Zhou, Weimin Tan, Bo Yan

Publication:

This paper is included in the IEEE Transactions on Multimedia, 2023.

Abstract:

In recent years, we have seen the success of deep video enhancement models. However, the performance improvement of new methods has gradually entered a bottleneck period. Optimizing model structures or increasing training data brings less and less improvement. We argue that existing models with advanced structures have not fully demonstrated their performance and demand further exploration. In this study, we statistically analyze the relationship between motion estimation accuracy and video interpolation quality of existing video frame interpolation methods, and find that only supervising the final output leads to inaccurate motion and further affects the interpolation performance. Based on this important observation, we propose a general motion distillation framework that can be widely applied to flow-based and kernel-based video frame interpolation methods. Specifically, we begin by training a teacher model, which uses the ground-truth target frame and adjacent frames to estimate motion. These motion estimates then guide the training of a student model for video frame interpolation. Our experimental results demonstrate the effectiveness of this approach in enhancing performance across diverse advanced video interpolation model structures. For example, after applying our motion distillation framework, the CtxSyn model achieves a PSNR gain of 3.047dB.