Authors:
Yu Ling, Weimin Tan, Bo Yan
Publication:
This paper is included in the Proceedings of the 32nd International Joint Conference on Artificial Intelligence(IJCAI), Aug 19-25, 2023.
Abstract:
Survival analysis aims at modeling the relationship between covariates and event occurrence with some untracked (censored) samples. In implementation, existing methods model the survival distribution with strong assumptions or in a discrete time space for likelihood estimation with censorship, which leads to weak generalization. In this paper, we propose Implicit Survival Function (ISF) based on Implicit Neural Representation for survival distribution estimation without strong assumptions, and employ numerical integration to approximate the cumulative distribution function for prediction and optimization. Experimental results show that ISF outperforms the state-of-the-art methods in three public datasets and has robustness to the hyperparameter controlling estimation precision.