[ICCV 2021] Perceptual Variousness Motion Deblurring with Light Global Context Refinement

发布者:代刘博发布时间:2021-12-22浏览次数:907

Authors:

Jichun Li; Weimin Tan; Bo Yan


Publication:

This paper is included in the Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 10-17, 2021.


Abstract:

Deep learning algorithms have made significant progress in dynamic scene deblurring. However, several challenges are still unsettled: 1) The degree and scale of blur in different regions of a blurred image can have a considerable variation in a large range. However, the traditional input pyramid or downscaling-upscaling, is designed to have limited and inflexible perceptual variousness to cope with large blur scale variation. 2) The nonlocal block is proved to be effective in the image enhancement tasks, but it requires high computation and memory cost. In this paper, we are the first to propose a light-weight globally analyzing module into the image deblurring field, named Light Global Context Refinement (LGCR) module. With exponentially lower cost, it achieves even better performance than the nonlocal unit. Moreover, we propose the Perceptual Variousness Block (PVB) and PVB-piling strategy. By placing PVB repeatedly, the whole method possesses abundant reception field spectrum to be aware of the blur with various degrees and scales. Comprehensive experimental results from the different benchmarks and assessment metrics show that our method achieves excellent performance to set a new state-of-the-art in motion deblurring.